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! Multithreaded programming is notoriously difficult, 
in part due to schedule-dependent behavior 
!  race conditions, deadlocks, atomicity violations, ... 
! difficult to detect, reproduce, or eliminate 

Multithreading and Multicore 



Race Conditions 
! Two threads access a shared variable without 

synchronization, and at least one thread does a write 
! Very common 

2003 Blackout ($6 Billion) Therac-25 
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•  Compute partial order of operations 
•  Ensure conflicting access are not concurrent 
•  Sound & Complete 
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•  Track locks held on all accesses to var. 
-  empty lock set implies possible race 

•  Unsound & Incomplete 
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FastTrack 

•  Design Criteria: 
-  sound 
  (find at least 1st race on each var) 
-  complete (no false alarms) 
-  efficient 

•  Insight: Accesses to a var are  
    almost always totally ordered 
    in the Happens-Before relation 
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Thread A Thread B Happens-Before  
! Event Ordering: 

–  program order 
–  synchronization order 

! Types of Races: 
–  Write-Write  
–  Write-Read  

"  (write before read) 
–  Read-Write 

"  (read before write) 

... 
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Thread A Thread B Thread C Thread D 
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Read-Write Races -- Ordered Reads 

? 

Most common case: thread-local, lock-protected, ... 
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RoadRunner Architecture 

RoadRunner 
Instrumenter 

Error: race on x... Java 
Bytecode 

A: acq(m) 
A: read(x) 
B: write(y) 
A: rel(m) 

Event Stream Back-End 
Checker Instrumented 

Bytecode 

Standard JVM 



Validation 
! Six race condition checkers 

–  all use RoadRunner 
–  share common components (eg, VectorClock) 
–  profiled and optimized 

! Further optimization opportunities 
–  unsound extensions, dynamic escape analysis, 

static analysis, implement inside JVM, 
hardware support, ... 

! 15 Benchmarks 
–  250 KLOC 
–  locks, wait/notify, fork/join, barriers, ... 
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Slowdown (x Base Time) 
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O(n) Vector Clock Operations 
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Basic VC 100%
DJIT+ 26.0%
FastTrack <0.1%

96.4% of all ops are 
Reads/Writes 

R/W ops requiring      
O(n) time: 



! FastTrack allocated ~200x fewer VCs 

(Note: VCs for dead objects can be garbage collected)  

! Improvements 
–  accordion clocks [CB 01] 
–  analysis granularity [PS 03, YRC 05] (see paper) 

Checker Memory 
Overhead 

Basic VC, 
DJIT+ 7.9x 

FastTrack 2.8x 

Memory Usage 



Eclipse 3.4 
! Scale 

–  > 6,000 classes 
–  24 threads 
–  custom sync. idioms 

! Precision (tested 5 common tasks) 
–  Eraser:  ~1000 warnings 
–  FastTrack:  ~30 warnings 

! Performance on compute-bound tasks 
–  > 2x speed of other precise checkers 
–  same as Eraser 



Beyond Detecting Race Conditions 

! FastTrack finds real race conditions 
–  races correlated with defects 
–  cause unintuitive behavior on relaxed memory 

! Which race conditions are real bugs?  
–  that cause erroneous behaviors (crashes, etc) 
–  and are not “benign race conditions” 
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! Race: can return either write (mm non-determinism) 
! Typical JVM: mostly sequentially consistent 
! Adversarial memory 

–  use heuristics to return older stale values 



Adversarial Memory 
! Record history of all writes (plus VCs) to racy variables 
! At read 

–  determine all visible writes legal under JMM 
–  heuristically pick one likely to crash target program 

! Six heuristics: 
–  Sequentially consistent: return last write 
–  Oldest: return “most stale” value 
–  Oldest-but-different: never return same val twice 

"  if (p != null) p.draw() 
–  Random, Random-but-different 



Experimental Results 


