
Stephen Freund
Williams College

FastTrack:
Efficient and Precise Dynamic
Race Detection
(+ identifying destructive races)
Cormac Flanagan
UC Santa Cruz

! Multithreaded programming is notoriously difficult,
in part due to schedule-dependent behavior
!  race conditions, deadlocks, atomicity violations, ...
! difficult to detect, reproduce, or eliminate

Multithreading and Multicore

Race Conditions
! Two threads access a shared variable without

synchronization, and at least one thread does a write
! Very common

2003 Blackout ($6 Billion) Therac-25

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

•  Compute partial order of operations
•  Ensure conflicting access are not concurrent
•  Sound & Complete

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

•  Track locks held on all accesses to var.
-  empty lock set implies possible race

•  Unsound & Incomplete

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
...

Barriers [PS 03]
Initialization [vPG 01]

...

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
... RaceTrack [YRC 05]

 MultiRace [PS 03]
 Hybrid Race Detector [OC 03]

 ...

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
... RaceTrack [YRC 05]

 MultiRace [PS 03]
 Hybrid Race Detector [OC 03]

 ...

FastTrack

•  Design Criteria:
-  sound
 (find at least 1st race on each var)
-  complete (no false alarms)
-  efficient

•  Insight: Accesses to a var are
 almost always totally ordered
 in the Happens-Before relation

x = 0

rel(m)

acq(m)

x = 1

y = x

Thread A Thread B Happens-Before
! Event Ordering:

–  program order
–  synchronization order

! Types of Races:
–  Write-Write
–  Write-Read

"  (write before read)
–  Read-Write

"  (read before write)

...

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

x = 0
4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 1 3 0

4 1 0 1

? Yes

? Yes

O(n) time

x = 0
4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1

x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1

x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx VCA ?

5 1 ? No 4 8

O(n) time

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

Write-Write and Write-Read Races

?

?

?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

No Races Yet: Writes Totally Ordered!

?

?

?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

No Races Yet: Writes Totally Ordered!

?

O(1)

x = 0
4 1

4 0

2 8

0 8

2 1 1@B

VCA VCB Lm Wx

0 0 4@A Write-Write Check: Wx VCA ?
4 1 ? Yes 1@B

(1 ! 1?)

O(1) time

Last Write
"Epoch"

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3@A

VCA VCB Lm Wx

2 1 4@A

4 1 4@A

4 1 4@A

4 1 8@B

x = 0

rel(m)

acq(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B

Write-Read Check:

5 1 ? No 8@B

Wx VCA ?

O(1) time (8 ! 1?)

Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...

Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Races -- Unordered Reads

?

fork

? ?

x = 0

x = 0
-

VCA VCB Wx Rx

7 0

fork
7@A 7 0

7 1 7@A 8 0

read x
7 1 7@A 8 0

7@A 8 0
x = 2

7 1 8@A

read x

8 1

8 1

-

-

-

1@B
O(1)

O(n)

Read-Write Check: Rx VCA ?

8 0 8 1 ? No

O(n)

Thread A Thread B Thread C Thread D

read x

x = 2

read x

? ?

O(n)

Thread A Thread B Thread C Thread D

read x

x = 2

read x

Thread A Thread B Thread C Thread D

read x

x = 2

read x

x = 3

?

O(n)

?

?

Thread A Thread B Thread C Thread D

read x

x = 2

read x

x = 3

?

Forget VC for Rx
and switch back

to "last read epoch"

O(1)

RoadRunner Architecture

RoadRunner
Instrumenter

Error: race on x... Java
Bytecode

A: acq(m)
A: read(x)
B: write(y)
A: rel(m)

Event Stream Back-End
Checker Instrumented

Bytecode

Standard JVM

Validation
! Six race condition checkers

–  all use RoadRunner
–  share common components (eg, VectorClock)
–  profiled and optimized

! Further optimization opportunities
–  unsound extensions, dynamic escape analysis,

static analysis, implement inside JVM,
hardware support, ...

! 15 Benchmarks
–  250 KLOC
–  locks, wait/notify, fork/join, barriers, ...

Warnings
27

5

3

8 8 8

0

5

10

15

20

25

30

Eraser

[SBN+ 97]

MultiRace

[PS 03]

GoldiLocks

[EQT 07]

 Basic VC

[M 88]

 DJIT+

[PS 03]

FastTrack

22 false positives
 3 false negatives

Slowdown (x Base Time)

4.1

8.6

21.7

31.6

89.8

20.2

8.5

0

5

10

15

20

25

30

35

40

45

50

Empty Eraser MultiRace Goldilocks Basic VC DJIT+ FastTrack

O(n) Vector Clock Operations

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

1.0E+11

co
lt

cr
yp

t

lu
fa
ct

m
ol
dy

n

m
on

te
ca

rl
o

m
tr
t

ra
ja

ra
yt
ra

ce
r

sp
ar

se

se
ri
es so

r
ts
p

el
ev

at
or

ph
ilo

he
dc jb

b

Basic VC

DJIT+

FastTrack

O(n) Vector Clock Operations

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

1.0E+11

co
lt

cr
yp

t

lu
fa
ct

m
ol
dy

n

m
on

te
ca

rl
o

m
tr
t

ra
ja

ra
yt
ra

ce
r

sp
ar

se

se
ri
es so

r
ts
p

el
ev

at
or

ph
ilo

he
dc jb

b

Basic VC

DJIT+

FastTrack

Basic VC 100%
DJIT+ 26.0%
FastTrack <0.1%

96.4% of all ops are
Reads/Writes

R/W ops requiring
O(n) time:

! FastTrack allocated ~200x fewer VCs

(Note: VCs for dead objects can be garbage collected)

! Improvements
–  accordion clocks [CB 01]
–  analysis granularity [PS 03, YRC 05] (see paper)

Checker Memory
Overhead

Basic VC,
DJIT+ 7.9x

FastTrack 2.8x

Memory Usage

Eclipse 3.4
! Scale

–  > 6,000 classes
–  24 threads
–  custom sync. idioms

! Precision (tested 5 common tasks)
–  Eraser: ~1000 warnings
–  FastTrack: ~30 warnings

! Performance on compute-bound tasks
–  > 2x speed of other precise checkers
–  same as Eraser

Beyond Detecting Race Conditions

! FastTrack finds real race conditions
–  races correlated with defects
–  cause unintuitive behavior on relaxed memory

! Which race conditions are real bugs?
–  that cause erroneous behaviors (crashes, etc)
–  and are not “benign race conditions”

Thread 0 Thread 1 Thread 2
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!

Thread 0 Thread 1 Thread 2
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!

Thread 0 Thread 1 Thread 2
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!

! Race: can return either write (mm non-determinism)
! Typical JVM: mostly sequentially consistent
! Adversarial memory

–  use heuristics to return older stale values

Adversarial Memory
! Record history of all writes (plus VCs) to racy variables
! At read

–  determine all visible writes legal under JMM
–  heuristically pick one likely to crash target program

! Six heuristics:
–  Sequentially consistent: return last write
–  Oldest: return “most stale” value
–  Oldest-but-different: never return same val twice

"  if (p != null) p.draw()
–  Random, Random-but-different

Experimental Results

